
The Rise of AutoRun-
Based Malware
By Vinoo Thomas, Prashanth Ramagopal,

and Rahul Mohandas

Report

Table of Contents

Abstract	 3

The Return of Removable-Disk Malware	 3

Distribution of AutoRun-Based Malware	 4

AutoRun Woes	 6

Incomplete autorun.inf cleaning	 7

Traditional detection methods	 8

Smart removal of autorun.inf	 8

Leveraging In-the-Cloud Computing Technology	 10

The Road Ahead 	 11

About the authors	 12

Report	 The Rise of AutoRun-Based Malware

3

Report	 The Rise of AutoRun-Based Malware

Abstract
Most people associate today’s computer viruses and other prevalent malware with the Internet. But
that’s not where they started. Lest we forget, the earliest computer threats came from the era of floppy
disks and removable media. With the arrival of the Internet, email and network-based attacks became
the preferred infection vector for hackers to spread malicious code—while security concerns about
removable media took a back seat. Now, however, our attention is returning to plug-in media.

Over the years, floppy disks have been replaced by portable hard drives, flash media cards, memory
sticks, and other forms of data storage. Today’s removable devices can hold 10,000 times more data
than yesterday’s floppy disks. Not only can they store more data, today’s devices are “smart”—with the
ability to run portable software programs1 or boot operating systems. 2,3

Seeing the popularity of removable storage, virus authors realized the potential of using this media as
an infection vector. And they are greatly aided by a convenience feature in operating systems called
AutoRun, which launches the content on a removable disk without any user interaction.

This paper traces the advancements in AutoRun-based malware. We also discuss methods to proactively
detect and stop malware that spreads via removable drives, using a combination of traditional anti-
malware and cloud-computing techniques.

The Return of Removable-Disk Malware
During the last couple of years we have seen malware authors achieve stunning success as they
increasingly incorporate the AutoRun technique into malware families. In addition to traditional
AutoRun worms that use this feature, pure-play backdoors,4 bots,5 password stealers,6 and even parasitic
viruses7 that previously required a user to double-click an executable file to infect the system have
incorporated the AutoRun technique. And the easy availability of source code for these families on the
Internet allows script kiddies to repackage and compile new variants.

The year 2008 included several high-profile incidents in which AutoRun-based threats made headlines.
Poor quality-control practices from hardware manufactures led to repeated incidents of USB memory
sticks,8 hard drives,9 MP3 players,10 and digital photo frames11 being sold to customers with AutoRun
malware preinstalled. Unsuspecting customers got more than what they paid for.

The U.S. military12 banned the use of thumb drives, flash media cards, and all other removable data
storage devices from their networks to try to keep the worm from multiplying any further. For some
departments, the ban was a minor inconvenience, but to soldiers in the field who relied on removable
drives to store information, this drastic measure was too extreme.

Security vendors were not spared either. In a major embarrassment, Telstra13 distributed worm-infected
USB drives to participants at the AusCERT security conference. Luckily the worm did not have a payload,
and no serious damage was done.

AutoRun-based malware may have also traveled into orbit and onto the International Space Station14 via
an infected USB drive owned by an astronaut. The laptop used by the astronaut reportedly did not have
any anti-malware software to prevent an infection.

1	 http://www.u3.com
2	 http://www.remote-exploit.org/backtrack_download.html
3	 http://www.cnet.com.au/software/operatingsystems/0,239029541,339271777,00.htm
4	 http://vil.nai.com/vil/content/v_142042.htm
5	 http://www.cert-in.org.in/virus/worm_hamweq.htm
6	 http://vil.nai.com/vil/content/v_147533.htm
7	 http://vil.nai.com/vil/content/v_147094.htm
8	 http://www.theregister.co.uk/2008/04/07/hp_proliant_usb_key_infection/
9	 http://blogs.zdnet.com/security/?p=2016
10	http://www.virusbtn.com/news/2008/01_08a.xml
11	http://www.securityfocus.com/brief/670
12	http://blog.wired.com/defense/2008/11/army-bans-usb-d.html
13	http://blogs.zdnet.com/security/?p=1173
14	http://news.bbc.co.uk/2/hi/technology/7583805.stm

http://www.u3.com
http://www.remote-exploit.org/backtrack_download.html
http://www.cnet.com.au/software/operatingsystems/0,239029541,339271777,00.htm
http://vil.nai.com/vil/content/v_142042.htm
http://www.cert-in.org.in/virus/worm_hamweq.htm
http://vil.nai.com/vil/content/v_147533.htm
http://vil.nai.com/vil/content/v_147094.htm
http://www.theregister.co.uk/2008/04/07/hp_proliant_usb_key_infection/
http://blogs.zdnet.com/security/?p=2016
http://www.virusbtn.com/news/2008/01_08a.xml
http://www.securityfocus.com/brief/670
http://blog.wired.com/defense/2008/11/army-bans-usb-d.html
http://blogs.zdnet.com/security/?p=1173
http://news.bbc.co.uk/2/hi/technology/7583805.stm

4

Report	 The Rise of AutoRun-Based Malware

These incidents are a small percentage of episodes that were publicly reported. In reality, a majority
of security incidents go unreported to avoid media attention. These incidents also teach us that
every industry—military or commercial—is increasingly susceptible to threats that use AutoRun as an
infection vector.

Distribution of AutoRun-Based Malware
To investigate the most prevalent compilers and packers used to create AutoRun worms, we gathered
data for all AutoRun-based worms that McAfee® Avert® Labs received in the last three years. The
following charts display compiler and packer distribution of AutoRun-based worms.

Figure 1: Compiler distribution from McAfee sample collections (as of December 2008)

Figure 2: Packer distribution from McAfee sample collections (as of December 2008)

From the data collected we observe that AutoIt and UPX are the most widespread compiler and packer,
respectively, for creating AutoRun-based malware. We attribute this popularity to three key reasons:

AutoIt•• 15 and UPX16 are open-source software and freely available on the Internet
Malware source code for creating AutoIt-based worms is readily available on the Internet••

Files compiled with AutoIt 3.2x versions and earlier can be decompiled to dump the original script ••

using a freely available decompiler17 on an AutoIt blog

These reasons allows script kiddies to look at existing AutoRun worm samples written in AutoIt
and make modifications to the script to suit the author’s requirements. The modified script is
then recompiled to create fresh variants of the worm and can be tweaked until it bypasses anti-
malware detection.

15	http://www.autoitscript.com/AutoIt/
16	http://upx.sourceforge.net/
17	http://leechermods.blogspot.com/2008/02/autoit-decompiler-unpacker-and-script.html

http://www.autoitscript.com/AutoIt/
http://upx.sourceforge.net/
http://leechermods.blogspot.com/2008/02/autoit-decompiler-unpacker-and-script.html

5

Report	 The Rise of AutoRun-Based Malware

Typical alterations made to the body of the worm are updated links to download further malware and
provocative messages within the worm. We have seen AutoIt-flavored malware in French, Indonesian,
Punjabi, Vietnamese, and other languages with regional themes.

Figure 3: A Vietnamese AutoRun worm

Figure 4: An AutoRun worm using Indian scandals as bait

Figure 5: A French-language AutoRun worm

The bait messages within the worm’s body include admonitions to not view porn, religious chants,
sensationalistic news, and videos of local sex scandals.

6

Report	 The Rise of AutoRun-Based Malware

AutoRun Woes
AutoRun18 is a convenience feature in operating systems that automatically launches the content on
removable media as soon as a drive is inserted into a system. The AutoRun process is triggered using the
file autorun.inf,19 which specifies the path to an executable that runs automatically.

Figure 6: A typical autorun.inf file

Unfortunately for most of us, malware authors have seized on this benign feature to autolaunch
malware without any user interaction when a removable device (for example, a memory stick or external
hard drive) is inserted into a system. The computer recognizes a newly connected removable drive,
detects the autorun.inf file, and loads the malware.

Another infection vector occurs due to drive mapping. When a computer maps a drive letter to a shared
network resource with a malicious autorun.inf, the system will (by default) open autorun.inf and follow
its instructions to load the malware. Once the system is infected, the malware will do the same with
other removable drives connected to it or other computers in the network that attempt to map a drive
letter to its infected shared drive—hence, the frequent replication.

Avert Labs first added detection in January 2007 for autorun.inf files that accompany malware as
Generic!atr.20 Since then we have observed an alarming increase21 in malware using AutoRun as an
infection vector. We’ll give you an example of how rampant the problem of AutoRun malware is in the
real world: Shown below is the McAfee global virus map, which tracks statistics of infections observed
by McAfee users worldwide.

18	http://en.wikipedia.org/wiki/Autorun
19	http://msdn.microsoft.com/en-us/library/bb776823.aspx
20	http://vil.nai.com/vil/content/v_141387.htm
21	ESET. “Global Threat Trends,” (November 2008). http://www.eset.com/threat-center/case_study/Global_Threat_Trends_November_2008.pdf

http://en.wikipedia.org/wiki/Autorun
http://msdn.microsoft.com/en-us/library/bb776823.aspx
http://vil.nai.com/vil/content/v_141387.htm
http://www.eset.com/threat-center/case_study/Global_Threat_Trends_November_2008.pdf

7

Report	 The Rise of AutoRun-Based Malware

Figure 7: McAfee global virus statistics (as of 1 December 2008)22

We detected Generic!atr on more than two million files in a 24-hour period. This malware has been in
the top five detections globally ever since the signature was added to the McAfee DAT files. Figure 7
shows detections only on computers running McAfee anti-virus whose users have chosen to report their
detections. When you take into account the millions of computers on the Internet and other vendor23
detections24 of AutoRun-based threats, one can understand how rampant the problem really is.

Incomplete autorun.inf cleaning
What happens if the anti-malware software deletes only the malware file and does not delete the
accompanying autorun.inf in the root of the drive? Whenever a user clicks on My Computer and tries
to navigate to the root of a drive, explorer.exe automatically loads autorun.inf. If the malware file was
deleted but autorun.inf was left behind, then whenever users attempt to open the contents of the drive
via Explorer, they will see the following error:

Figure 8: Users see this error message when accessing an infected drive after an incomplete cleaning

22	http://us.mcafee.com/virusInfo/default.asp?id=regional
23	http://blogs.technet.com/mmpc/archive/2008/06/20/taterf-all-your-drives-are-belong-to-me-1-one.aspx
24	http://www.eset.com/threat-center/case_study/Global_Threat_Trends_November_2008.pdf

http://us.mcafee.com/virusInfo/default.asp?id=regional
http://blogs.technet.com/mmpc/archive/2008/06/20/taterf-all-your-drives-are-belong-to-me-1-one.aspx
http://www.eset.com/threat-center/case_study/Global_Threat_Trends_November_2008.pdf

8

Report	 The Rise of AutoRun-Based Malware

This error message is logical because the executable path listed in autorun.inf no longer exists.
Thus every time the drive is accessed, Windows will deliver this message until the user manually
deletes autorun.inf.

The disconnected autorun.inf results in additional cleaning overhead, with customer queries and
complaints about the worm not being properly cleaned. An administrator would have to manually
delete this autorun.inf or submit it to the anti-malware vendor to add detection.

Traditional detection methods
Anti-malware vendors have traditionally used checksum or string-based logic to detect malicious
autorun.inf files. A common technique is to detect strings that are unique to an autorun.inf. Here’s an
example of pseudo code for a string-based signature detection of an autorun.inf file:

Eliminate on string “[AutoRun]” at beginning of file
Detect on string “open = malware executable name”

However, malware authors have subverted traditional methods of detection by obfuscating the
contents of autorun.inf. Introducing junk characters in the file will defeat traditional hash or string-
based detection.

Figure 9: An example of an obfuscated autorun.inf file used by W32/Conficker.worm

Figure 9 shows how the W32/Conficker.worm usually works—by creating an autorun.inf file such as
this.25 The worm drops this file, which contains about 60KB of random binary data.26 The command to
execute the worm is concealed within the garbage data.

The bad guys have also introduced random executable filenames, so that on each infected machine and
with every execution the filename in the path to the AutoRun executable will change.

With malware authors using a combination of junk characters to obfuscate along with random
filenames on every execution it’s easy to bypass conventional detection methods used by anti-
malware researchers.

Moreover, if the malware uses a weak or common filename—such as autoplay.exe or setup.exe—in
autorun.inf, researchers would hesitate to add detection using these strings because the chances of the
signature producing false-positives would be very high.

Smart removal of autorun.inf
We propose to solve this problem in the following way: Whenever malware is detected on a system by the
anti-malware scanner, before we clean we first check for the presence of an autorun.inf file in the root of
the drive. If an autorun.inf is present, we then scan its contents for the filename of the malware that the
scanner detected. If the malware filename is present, then the scanner labels that autorun.inf as malicious
and associated with the detected malware. The scanner then deletes both the AutoRun and malware files.

25	http://vil.nai.com/vil/content/v_153710.htm
26	http://isc.sans.org/diary.html?storyid=5695

http://vil.nai.com/vil/content/v_153710.htm
http://isc.sans.org/diary.html?storyid=5695

9

Report	 The Rise of AutoRun-Based Malware

Pseudo code for removal logic

if (malware detected in drive) then
{
	 if(drive has autorun.inf) then
		 {
		 if(autorun.inf has the malware entry) then
			 {
				 detect and delete autorun.inf
			 }
		 }
}

Figure 10: Sample logic for detecting and cleaning an associated autorun.inf file.
After deleting the detected malware, the anti-malware scanner then cleans associated malicious autorun.inf.

This flowchart acts as a generic signature to detect malicious autorun.inf files and will proactively detect
new variants without the need for additional hash- or string-based signatures. This will also ensure
accurate cleaning of these files without any false-positives.

10

Report	 The Rise of AutoRun-Based Malware

Leveraging In-the-Cloud Computing Technology
Anti-malware software has traditionally been installed on individual computers around the world as
endpoint protection. Depending on the vendor, these systems receive updated signature files and threat
information on an hourly or daily basis. With the emergence of cloud computing technology,27 this
community of anti-malware nodes28 can collectively contribute threat intelligence back to the cloud.
With millions of active anti-malware endpoints, cloud technology in real time collectively captures and
correlates fingerprints of new and potentially malicious code across the threat landscape. Each endpoint
transmits compact fingerprints about a suspicious file to an automated evaluation system for immediate
assessment. In seconds, the backend threat analysis tools can cross-check the characteristics of the file
to determine its likely threat level and notify the endpoint to take appropriate action.

Figure 11: Using in-the-cloud computing to detect AutoRun-based malware

27	�Buyya, R., Yeo, S., and Venugopal, S. “Market-Oriented Cloud Computing: Vision, Hype, and Reality for Delivering IT Services as Computing
Utilities,” (September 2008). Proceedings of the 10th IEEE International Conference, Dalian, China.
http://www.gridbus.org/~raj/papers/hpcc2008_keynote_cloudcomputing.pdf

28	http://www.mcafee.com/us/enterprise/products/artemis_technology/index.html

http://www.gridbus.org/~raj/papers/hpcc2008_keynote_cloudcomputing.pdf
http://www.mcafee.com/us/enterprise/products/artemis_technology/index.html

11

Report	 The Rise of AutoRun-Based Malware

In-the-cloud computing can be applied to “smart-scan” USB drives, for example, as described in
Figure 11. Whenever a user inserts a removable device into a computer, the anti-malware agent scans
the root of the removable drive for an autorun.inf. If that file exists, it is parsed to trace the path to the
executable, which is scanned. If no signature for the executable exists in the local signature database,
an agent sends a fingerprint of the file for instant lookup to the anti-malware vendor’s comprehensive
database. If the fingerprint is identified as known malware, a response to quarantine or delete the file
is sent back in milliseconds to the user’s computer. In addition to blocking execution of the malicious
file, the cleaning logic we proposed earlier can delete or quarantine the accompanying autorun.inf file
as well.

The rate at which malware morphs and propagates makes it difficult for any security vendor to keep
pace using traditional defenses. The need today is to correlate signature and behavioral techniques
with real-time threat intelligence gathered from the user community.29 The materialization of cloud
computing technology30 makes endpoints smarter and safer—by sharing collective threat intelligence
and preventing damage before a signature update is available.

The Road Ahead
Why is AutoRun as an infection vector so popular—especially with machines running Microsoft
Windows? AutoRun is enabled by default on all flavors of Windows, including the latest versions of
Windows Vista and Windows Server 2008. With AutoRun-based infections on the rise, Microsoft could
make a world of difference by addressing this exploited convenience feature. Microsoft has introduced
improvements to AutoRun in Windows 7 and the same could be applied to older operating systems in
future Windows updates.31

Looking at the recent evolution of AutoRun-based malware we can expect to encounter more complex
and challenging samples of this genre. It is, therefore, essential to revisit traditional detection methods
and improve upon our malware-defense strategies. The techniques discussed in this paper will go a long
way toward containing the spread of AutoRun-based malware.

29	�McAfee Avert Labs. “From Zero-Day to Real-Time,” (2008).
http://www.mcafee.com/us/local_content/technical_briefs/wp_zero_day_to_real_time.zip

30	Chappell, David. “A Short Introduction to Cloud Platforms,” (August, 2006). http://www.davidchappell.com/CloudPlatforms--Chappell.pdf
31	http://blogs.technet.com/mmpc/archive/2009/04/28/windows-addresses-the-changing-autorun-threat-environment.aspx

http://www.mcafee.com/us/local_content/technical_briefs/wp_zero_day_to_real_time.zip
http://www.davidchappell.com/CloudPlatforms--Chappell.pdf
http://blogs.technet.com/mmpc/archive/2009/04/28/windows-addresses-the-changing-autorun-threat-environment.aspx

McAfee and/or additional marks herein are registered trademarks or trademarks of McAfee, Inc., or its affiliates in the United States and/or
other countries. McAfee Red in connection with security is distinctive of McAfee-brand products. Any other non-McAfee related products, or
registered and/or unregistered trademarks contained herein are only by reference and are the sole property of their respective owners.
© 2009 McAfee, Inc. All rights reserved.

McAfee, Inc.
3965 Freedom Circle
Santa Clara, CA 95054
1.888 847 8766
www.mcafee.com

This document is intended only to provide general educational information to McAfee’s customers and potential customers. McAfee provides
this document and the information contained herein “as is,” with no implied or expressed warranties as to the accuracy, merchantability, or
fitness for a particular purpose. Advice and opinions contained herein are those of the authors and do not necessarily reflect the views or
opinions of McAfee, Inc.

Report	 The Rise of AutoRun-Based Malware

Rahul Mohandas is a virus research engineer with Avert Labs in Bangalore. He
pursues malware and vulnerability research, and frequently analyzes malware trends
and exploits on the Avert Labs blog. Mohandas has presented at security conferences
around the world.

Prashanth Ramagopal is a research scientist with Avert Labs in Bangalore. He is an
expert in reverse-engineering polymorphic malware and writing generic detection.
When not fighting malware, Ramagopal follows his passion for photography.

Vinoo Thomas is a malware research lead with McAfee Avert Labs in Bangalore,
India. His primary responsibilities include analyzing computer viruses, tracking global
malware trends, and coordinating researchers. Thomas is a regular contributor to
the McAfee Avert Labs blog and a columnist on computer security for the “Economic
Times of India.” He has several pending software patents and has published papers
with EICAR, IEEE, and Virus Bulletin.

About the authors

www.mcafee.com

